Sir John Lillie Primary School

Mathematics
Calculations Policy

This policy supports the White Rose maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

This policy has been taken and adapted from White Rose Maths. It has been designed to teach children through the use of concrete, pictorial and abstract representations.

- Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$. It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Mathematics mastery

At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

This policy goes through the four operations:
Addition
Subtraction
Multiplication
Division
Each operation is broken down into skills for each year group and shows recommended concrete resources, visual representations and informal and formal written methods.

Ad@ర゚ఝion

Concrete resources and images	EYFS
Use toys and general classroom resources for children to physically manipulate, group/regroup. Use visual supports such as ten frames, part part Use specific maths whole and addition mats, resources such as counters, snap with the physical objects cubes, Numicon etc. and resources that can be manipulated. Pictorial Two groups of pictures so children are able to count the total. Use visual supports such as ten frames, part part whole and addition mats with pictures/icons. Abstract $5+2=7$ * No expectation for children to be able to record a number sentence/addition calculation.	- Knows that a group of things change in quantity when something is added. - Find the total number of items in two groups by counting all of them. - Says the number that is one more than a given number. - Understand the 1more than/one less than relationship between consecutive numbers. - In practical activities and discussion, beginning to use the vocabulary involved in adding. - Using quantities and objects, they add two single digit numbers and count on to find the answer. - Solve problems including *doubling. - Automatically recall number bonds for numbers 0 to 5 including subtraction facts and some number bonds to 10

Skill: Add 1-digit numbers within 10 年

Skill: Add 1 and 2-digit numbe	Year: 1/2
$8+7=15$ $\left\{\begin{array}{l} 8+7=15 \\ 2 \end{array}\right.$	When adding onedigit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Different manipulatives can be used to represent this exchange. Use concrete resources alongside number lines to support children in understanding how to partition their jumps.

Skill: Add three 1-digit numbers \quad\begin{tabular}{l}

\multicolumn{1}{c|}{| Year: 2 |
| :--- |}

\hline

When adding three 1-

digit numbers,

children should be

encouraged to look

for number bonds to

10 or doubles to add

the numbers more

efficiently.
\end{tabular}

Skill: Add 1-digit and 2-digit numbers to 100												Year: 2/3
												When adding single digits to a two-digit number, children should be encouraged to count on from the larger number. They should also apply their knowledge of number bonds to add more efficiently e.g. $8+5=13$ so 38 $+5=43$. Hundred squares and straws can support children to find the number bond to 10 .

Skill: Add numbers with up to 4 digit								Year: 4
								Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 4 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.

Skill: Add with up to 3 decimal places				Year: 5
$3 .$	$65+2.4$	2.41 -? 6.06	$\begin{array}{r} 3.65 \\ +2.41 \\ \hline 6.06 \\ \hline 1 \end{array}$ \square	Place value counters and plain counters on a place value grid are the most effective manipulatives when adding decimals with 1,2 and then 3 decimal places. Ensure children have experience of adding decimals with a variety of decimal places. This includes putting this into context when adding money and other measures.

Year 6-add several numbers of increasing complexity Including adding money, measure and decimals with different numbers of decimal places (using 0 as a place holder.

Insert zeros for place holders.

23.361
$9 \cdot 080$
$59 \cdot 770$
$+\quad 1 \cdot 300$
$93 \cdot 511$
21

Subtraction

Concrete resources and images

EYFS

- Knows that a group of things change in quantity when something is taken away
- Find one less from a group of five objects, then ten objects.
- In practical activities and discussion, beginning to use the vocabulary involved in subtracting.
- Using quantities and objects, they subtract two single digit numbers and count back to find the answer.

Pictoral

Use visual supports such as ten frames, part part whole and bar model with pictures/icons.

A group of pictures for children to cross out or cover quantities to support subtraction.

Abstract

$$
10-6=4
$$

Skill: Subtract numbers with up to 3 digits							Year: 3
		273 43 Ones $.1 / f t$	$5-27$ $\begin{array}{r} 3135 \\ -273 \\ \hline 262 \\ \hline \end{array}$	$=26$	73		Base 10 and place value counters are the most effective manipulative when subtracting numbers with up to 3 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.

Skill: Subtract numbers with up to 4 digits								Year: 4
			4,357			$\begin{array}{r} 31 \\ 4357 \\ -2735 \\ \hline 1622 \\ \hline \end{array}$		Base 10 and place value counters are
				735	$?$			the most effective manipulatives when subtracting numbers
		$?$						with up to 4 digits.
		$4,357-2,735=1,622$						alongside any
		Tens	Ones		Hundreds	Tens	Ones	written colum
		IIkłt	"シ"		000	8087	$80 \varnothing \varnothing$	method.
					ఠøøø			Plain counters on a place value grid can also be used to

Year 6 using the formal written method to Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place)

$$
\begin{array}{r}
\text { X" } 816,699 \\
-\quad 89,949 \\
\hline 60,750
\end{array}
$$

$$
\begin{array}{r}
Y 1015 \cdot 3 k 19 \mathrm{~kg} \\
-\quad 36 \cdot 080 \mathrm{~kg} \\
\hline 69 \cdot 339 \mathrm{~kg}
\end{array}
$$

Multiolicatton

Our calculation policy for multiplication shows a breakdown of times tables; what should be taught when and what that teaching should look like.

During the Summer Term, the children in Year 4 sit the Multiplication Tables Check in line with the Government's assessment framework.

Times tables continue to be recalled and tested throughout Years 5 and 6 with the times tables Olympics.

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 2-times table	2	Bur model Number shapes Counters Money	Ten frames Bead strings
Recall and use multiplication and division facts for the 5-times table	2	Bar model Number lines	
Recall and use multiplication and division facts for the 10-times table	2	Number shapes Counters Money	Ten frames
Recall and use multiplication and division facts for the 3-times table	2	Hundred square Number shapes Counters Monev	Number lines Everyday objects
Recall and use multiplication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings
Recall and use multiplication and division facts for the 8-times table	3	Nundred square	Base 10

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 7-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 11-times table	4	Hundred square Base 10	Place value counters Number lines
Recall and use multiplication and division facts for the 12-times table	4	Hundred square Base 10	Place value counters Number lines

Skill: Solve 1-step problems using multiplication \quad\begin{tabular}{l}

\multicolumn{1}{c|}{| Year: $1 / 2$ |
| :--- |}

lildren represent
multiplication as
repeated addition in
many different ways.
In Year 1, children use
concrete and pictorial
representations to
solve problems. They
are not expected to
record multiplication
formally.

In Year 2, children are

introduced to the

multiplication symbol.
\end{tabular}

Skill: Multiply 4-digit numbers by 1-digit numbers | Year: 5 |
| :--- |

Skill: Multiply 3-digit numbers by 2-digit numbers

Divvi̊sion

Concrete resources and images

Children have the opportunity to physically cut objects, food or shapes in half.

Share quantities using practical resources, role play, stories and songs

Use visual supports such as halving mats and part part whole, with the physical objects and resources that can be manipulated

Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 .

Bar model with pictures or icons to support understanding of finding 2 equal parts of a number, to further understand how two halves make a whole.

Solve problems including halving and sharing

Skill: Solve 1-step problems using multiplication (sharing) \quad| Year: $\mathbf{1 / 2}$ |
| :--- |

Skill: Solve 1-step problems using division (grouping) \quad| Year: $1 / 2$ |
| :--- |

Year 1
Begin to understand
as grouping using
concrete resources
Year 2
Use concrete resources
to group
and use the division
symbol

Skill: Divide 2-digits by 1-digit (sharing with no exchange) | Year: '2 |
| :--- |
| When dividing larger |
| numbers, children can |
| use manipulatives |
| that allow them to |
| partition into tens and |
| ones. |
| Straws, Base 10 and |
| place value counters |
| can all be used to |
| share numbers into |
| equal groups. |

Skill: Divide 2-digits by 1-digit (grouping) \quad\begin{tabular}{l}
Year: 4/5

\hline $\mathbf{5 2} \div \mathbf{4}=\mathbf{1 3}$

When using the short
division method,
children use grouping.
Starting with the
largest place value,
they group by the
divisor.

Language is
important here.
Children should
lonsider 'How many
groups of 4 tens can
we make?' and 'How
many groups of 4
ones can we make?'
Remainders can also
be seen as they are
left ungrouped.

\hline
\end{tabular}

Skill: Divide 2-digits by 1-digit (grouping) | Year: $4 / 5$ |
| :--- |
| When using the short |
| division method, |
| children use grouping. |
| Starting with the |
| largest place value, |
| they group by the |
| divisor. |
| Language is |

Skill: Divide 3-digits by 1-digit (sharing)

Skill: Divide 4-digits by 1-digit (grouping)						Year: 5
$8,532 \div 2=4,266$	2	4	2	6 13	6 1_{2}	Place value counters or plain counters can be used on a place value grid to support children to divide 4digits by 1 -digit. Children can also draw their own counters and group them through a more pictorial method. Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges.

© 2021 White Rose Maths

